太原杏花岭区口碑好的不错的高中全科辅导培训学校

机构:苏州学大教育 时间:2023-10-24 点击:100

双减政策之后,所剩不多的培训机构都是经过教育部门各方面严格审核才存留下来的,家长们想给孩子补课,可以多参考几家正规机构,让孩子多试听,方便选择更适合自己的机构。

中小学高中全科辅导机构

高考课程教学流程


一轮
基础知识

回归教材-以纲为经,以目为纬,对知识进行系统、全面扫除学生知识盲点

二轮
专题强化

梳理归纳-梳理、归纳各科各专题考基础强化-注重专题知识的基础巩固

三轮
综合训练

思维训练-训练高考各科目上百类题型的思维过程,强化记忆经验公式,方便提高解题效率

四轮
应试训练

模拟高考-全面讲解高考各科目的答题模板,再对学生进行各科目真题的统一考核

每周
每周教学流程

1.每周六:每周周考,检测学业过关情况,多维度把控学习进度;2.周考试卷分析及解决方案


管理特色

根据来校学生自我约束、自我控制、自我实现不强等特点,博大教育旨再帮助学生提升学习能力,培养良好行为养成为目标,采取宽严相济,启发引导,注重心里,一严为主的管理方法:

01封闭管理:住宿学生24小时在校,走读学生按照走读时间离校,平时请假必须经过家长同意,并履行请假手续。

02纪律学分:每名学生设定固定纪律学分,学校按照管理制度检查记录,对违反规章制度的学生扣除相应分数,并定期通报,按照扣分级别作出相应处罚,借以规范学生养成。

03全程监管:教学时间由班主任老师负责管理和照顾同学们的学习生活,非教学时间由舍务老师管理和照顾同学们的生活,确保学生安全。

04德育教育:定期组织励志教育,心理疏导和有益身心的文体活动,使同学们在紧张的学习之余能够形成健康的心里状态,良好的精神风貌。

高考复读学校

等差数列求和公式 求和的七种方法

等差数列求和公式 求和的七种方法

首页:高考辅导网 栏目:高中数学 时间:2019-06-23

等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列求和公式

1.公式法

2.错位相减法

3.求和选自.高考辅导 公式

4.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

5.裂项相消法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

注意:余下的项具有如下的特点

1、余下的项前后的位置前后是对称的。

2、余下的项前后的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:

求证:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5

证明:

当n=1时,有:

1×2×3×4 = 24 = 2×3×4×5/5

假设命题在n=k时成立,于是:

1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5

则当n=k+1时有:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)

= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)

= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)

= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)

= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5

即n=k+1时原等式仍然成立,归纳得证

7.并项求和法

(常采用先试探后求和的方法)

例:1-2+3-4+5-6+……+(2n-1)-2n

方法一:(并项)

求出奇数项和偶数项的和,再相减。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

方法三:

构造新的数列,可借用等差数列与等比数列的复合。

an=n(-1)^(n+1)

等差数列判定及性质

等差数列的判定

(1)a(n+1)--a(n)=d (d为常数、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n ≥2,d是常数]等价于{a(n)}成等差数列。

(2)2a(n+1)=a(n)+a(n+2) [n∈N*] 等价于{a(n)}成等差数列。

(3)a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列。

(4)S(n)=A(n)^2 +B(n) [A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。

特殊性质

在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍,

即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中

例:数列:1,3,5,7,9,11中a(1)+a(6)=12 ; a(2)+a(5)=12 ; a(3)+a(4)=12 ; 即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。

数列:1,3,5,7,9中a(1)+a(5)=10 ; a(2)+a(4)=10 ; a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5 ; 即,若项数为奇数,和等于中间项的2倍,另见,等差中项。

个性化制定学习方案


  • 高考理综一对一线下辅导机构

    定位学习问题,定制学习方案

  • 高考理综一对一线下辅导机构

    巩固基础知识,深化学习内容

  • 高考理综一对一线下辅导机构

    细化学习目标,监控学习进度

  • 高考理综一对一线下辅导机构

    找对解题技巧,攻克关键难点

  • 高考理综一对一线下辅导机构

    搭建知识框架,培养灵活思维

  • 高考理综一对一线下辅导机构

    考前心理辅导,调整应试心态


作为国内较早一批成立的教学机构,龙门教育始终坚持骨干教师执教,为学生学习 提供坚实的基础和保障;在教学上,以教学成果和教学质量为核心,从教学理念、教学形 式,教案准备、教学实践,到教学的消化和吸收,全面打造优质的教学平台,为每一位学 生提供高效系统的提升解决方案,帮助学生在短时间内挖掘进步潜力。

一对一辅导的好处在于:可帮助孩子及时补缺补漏。虽然早在十几年前,*就高喊减压的的口号,但是大家都知道这只是一种形式而已,中小学生的学习负担还是较重。每天的学习任务重,作业量大。

课外辅导一对一,课外辅导小班课,课外辅导全日制,各种班型,师资更强,知识点更多,赶快电询我们老师吧。

返回顶部