孩子高中学习吃力,课外教育来帮忙!专业的老师为学员带来精细化的辅导,针对性培训帮助学员解决学习问题,培养思维头脑和学习能力,让学员后续学习没有前顾之忧。以下就是小编整理的几家口碑不错的机构
课程特色
个性化测评
· 知识点掌握度
· 学习能力与习惯
· 性格、优势
个性化教学
· 分层设班
· 专用教材
· 个性化习题
全程跟踪辅导
· 教学授课
· 教管课后跟踪
· 自习陪读答疑
老师是具有多年教学经验的专业师资,可以更好地为学员提供优质的教学服务,帮助学员及时扫清学习中遇到的障碍,系统学习更加安心,更好地帮助学员进行能力的提升与发展。学员的学习可以得到更为系统的学习安排。为学员提供必要的教学指导,更好的实现综合能力的进一步发展,为学员提供优质的学习环境。
一对一辅导为学员提供专业艺考文化课辅导,这个时候为学员提供的也是一对一-的专业教学。并且根据学员所选择的科目进行辅导,使学员能够得到有针对性的提升学习。并且根据学员的学习情况对教学计划进行及时的调整,让学员感受到专业的学习。
有很多喜欢学习数学的同学,是非常的想知道,等差数列求和公式推导方法是什么,小编整理了相关信息,西瓦会对大家有所帮助!
等差数列求和公式是怎么推导的一。从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
二。从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…
=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}
三。若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=
(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。
若m+n=2p,则a(m)+a(n)=2*a(p)
(对3的证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n)
p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p
(q))
其他推论
①和=(首项+末项)×项数÷2
(证明:s(n)=[n,n^2]*[1,1/2;0,1/2]*[b(0);b(1)]=n*b0+1/2*b1*n+1/2*b1*n^2
(p(1)+p(n))*n/2=(b(0)+b(1)+b(0)+b(1)*n)*n/2=n*b0+1/2*b1*n+1/2*b1*n^2=s(n))
证明原理见高斯算法
项数=(末项-首项)÷公差+1
(证明:(p(n)-p(1))/b(1)+1=(b(0)+b(1)*n-(b(0)+b(1)))/b(1)+1=(b(1)*(n-1))/b(1)+1=n-1+1=n)
②首项=2x和÷项数-末项或末项-公差×(项数-1)
③末项=2x和÷项数-首项
(以上2项为第一个推论的转换)
④末项=首项+(项数-1)×公差
(上一项为第二个推论的转换)
推论3证明
若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)
+a(q)
如a(m)+a(n)=a(1)+(m-1)*d+a(1)+(n-1)*d
=2*a(1)+(m+n-2)*d
同理得,
a(p)+a(q)=2*a(1)+(p+q-2)*d
又因为
m+n=p+q;
a(1),d均为常数
所以
若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q)
若m,n,p∈N*,且m+n=2p,则有a(m)+a(n)=2a(p)
注:1。常数列不一定成立
2。m,p,q,n属于自然数
⑤2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和
等差数列求定义等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数
等差数列求和方法1、公式法
2、错位相减法
3、倒序相加法
4、分组法
5、裂项相消法
6、数学归纳法
7、通项化归法
先将通项公式进行化简,再进行求和。
如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8、并项求和法
(常采用先试探后求和的方法)
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶选自.高考补习班 数项的和,再相减。
方法二:
(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
方法三:
构造新的数列,可借用等差数列与等比数列的复合。
an=n(-1)^(n+1)
9、求和公式
高考课程教学流程
回归教材-以纲为经,以目为纬,对知识进行系统、全面扫除学生知识盲点
梳理归纳-梳理、归纳各科各专题考基础强化-注重专题知识的基础巩固
思维训练-训练高考各科目上百类题型的思维过程,强化记忆经验公式,方便提高解题效率
模拟高考-全面讲解高考各科目的答题模板,再对学生进行各科目真题的统一考核
1.每周六:每周周考,检测学业过关情况,多维度把控学习进度;2.周考试卷分析及解决方案
*前期沟通咨询
面对面沟通,了解学生个性特点
*科学完善评估
对学生学习情况进行科学完善的评估
*定制个性化辅导计划
根据学生个性特点、学科需求定制个性化辅导计划
*1对1、面对面授课
1对1、面对面授课,因材施教,专项巩固
*6对1个性化服务
机构服务团队(教育咨询师、班主任、学科教师、心理辅导老师、个性化研究教师、陪读教师)提供贴心服务
*监测评估
监督指导,及时反馈、随时修订辅导方案
选机构就选放心机构,学知识就找大牌机构,这里有更多又放心又大牌的课外辅导班,家长们快来电话咨询我们吧!