回归教材-以纲为经,以目为纬,对知识进行系统、全面而拉网式复习,扫除学生知识盲点;夯实基础-注重知识的积累构建知识网络;注重三基-注重“三基”训练(知识、技能、方法)
整理了关于中考数学复习:平面几何60个定理,希望对同学们有所帮助,仅供参考。
1、勾股定理(毕达哥拉斯定理)
2、射影定理(欧几里得定理)
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线的两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
1、学大教育(高中辅导,高三冲刺班,艺体文化课集训班)
2、金博教育(小初高一对一)
3、博众未来教育(小初高辅导,中考冲刺,高三集训,艺体文化课冲刺)
4、京誉教育(小初高一对一辅导,中考高考一对一全日制)
5、龙文教育高中辅导,高三冲刺,一对一,小班课)
6、新发展教育(小初高中辅导,高三全日制)
7、优培未来教育(中小学全科辅导、上门家教)
8、创新教育(高中辅导 高三全日制)
9、戴氏教育(初高中辅导,小班课)
10、秦学教育(初中高中一对一辅导)
以上内容来源于网络,仅供大家参考
优良、专业的课外辅导机构在师资上绝对是配备精良的,在信息上能与各大学校和社会信息同步,而且它们等同于一个学校,各方面的设施平配备方面都很齐全。这种机构不但能让孩子找到学习上的问题所在, 还能对症下药,效果比较明显。希望各位家长可以找到适合自己孩子的优质辅导补课机构(仅供大家参考)
回归教材-以纲为经,以目为纬,对知识进行系统、全面而拉网式复习,扫除学生知识盲点;夯实基础-注重知识的积累构建知识网络;注重三基-注重“三基”训练(知识、技能、方法)
梳理归纳梳理、归纳各科各专题必考考点;基础强化注重专题知识的基础巩固及运用;综合提高教学上强化培养学生解决问题的能力。
思维训练-训练中考各科目上百类题型的思维过程,强化记忆经验公式,方便提高解题效率;解题方法-部分中考考点的题型换汤不换药,名师荟名师在现阶段的教学中,全面强化解题方法的讲解。
模拟中考全面讲解中考各科母的答题模板,再对学生进行各科目真题的统一考核。保障考试强化中考应试技巧的讲解,让学生能得的分全部得到,得不了全分的也可以得步骤分。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答(也可点击下方预约试听)