天津和平今日公布高中数学补习辅导班哪个好

机构:聚能教育 时间:2023-10-29 点击:119

双减政策之后,所剩不多的培训机构都是经过教育部门各方面严格审核才存留下来的,家长们想给孩子补课,可以多参考几家正规机构,让孩子多试听,方便选择更适合自己的机构。

中小学高中全科辅导机构

把握复习节点做到心中有数

  • 暑秋弯道补习暑秋

    春季摸底考

    制定复习计划

    基础知识梳理

  • 一模突破课12-1月

    形成知识体系

    重点题型分析

    英语一考制胜

  • 复习的“黄金期”2-4月

    制定复习计划

    重难点补缺查漏

    高考政策解读

  • 考前点睛5-7月

    答题技巧训练

    全真模拟测试

    考场技巧点拨


这里提供优质的教师资源,也提供同学们良好的教学环境。老师们熟悉高考考试重点,也带过多届毕业班学员进行复习,熟悉同学们的学习痛点,针对性复习。一对一授课更让同学们体验到学校的专业,以及强大的力量。

全程跟踪,多轮摸底测试,科学安排教学,不断扫除知识死角,除班级教学外,适时开展小班训练和助教辅导,提高学生应试能力和得分技巧。

中小学高中全科辅导机构

高中数学复合函数求导公式及法则

高中数学复合函数求导公式及法则

首页:高考辅导网 栏目:高中数学 时间:2019-06-23

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。

复合函数如何求导

f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),

从而(公式):f'[g(x)]=f'(u)*g'(x)

呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!

f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)

所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).

以此类推y'=[cos(3x)]'=-3sin(x)

y'={sin(3-x)]'=-cos(x)

一开始会做不好,老是要对照公式和例子,

但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。

复合函数求导法则

证法一:先证明个引理

f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)

证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0

因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)

所以f(x)在点x0可导,且f'(x0)=H(x0)

引理证毕。

设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证明:由f(u)在u0可导,由引理必要性,存在一个在点选自.一对一辅导 u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)

证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

则lim(Δx->0)α=0

最终有dy/dx=(dy/du)*(du/dx)

个性化教育高考辅导科学教学环节

  • 免费沟通咨询

    面对面交流全面理解学生个性特点

  • 科学完善测评

    科学完善的测评体系帮助学生更好的学习

  • 制定个性化辅导计划

    根据学生学习情况,制定个性化的辅导计划

  • 一对一个性化授课

    一对一,面对面教学,个性化教学,深度教学,深入学习

  • 个性化服务

    专业服务团队为学生提供全程贴心服务

  • 学习效果测评

    全程监督指导,及时反馈,随时修订指导计划


中小学辅导积累了丰富的教学管理经验、拥有雄厚的师资力量并建立了优秀的管理团队。腾大教育中小学凭借一流的师资和科学管理,率先在全国实现了万人讲座和千人课堂的大规模教学,课堂学习充实,教学效果显著。

为学员接下来的学习提供优质的学习空间,更好的帮助学员做好系统的教学规划与指导,帮助学员更好的掌握相关知识,朝着一个更好的学习目标进行系统的学习,措建优质学习空间,这里就会是一个非常不错的选择,将学员接下来的学习提供合理教学内容。

课外辅导一对一,课外辅导小班课,课外辅导全日制,各种班型,师资更强,知识点更多,赶快电询我们老师吧。

返回顶部